CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects mice from acetaminophen hepatotoxicity.

نویسندگان

  • Bin Hu
  • Lisa M Colletti
چکیده

UNLABELLED Although acetaminophen is a commonly used analgesic, it can be highly hepatotoxic. This study seeks to further investigate the mechanisms involved in acetaminophen-induced hepatotoxicity and the role of chemokine (C-X-C motif) receptor 2 (CXCR2) receptor/ligand interactions in the liver's response to and recovery from acetaminophen toxicity. The CXC chemokines and their receptor, CXCR2, are important inflammatory mediators and are involved in the control of some types of cellular proliferation. CXCR2 knockout mice exposed to a median lethal dose of acetaminophen had a significantly lower mortality rate than wild-type mice. This difference was at least partially attributable to a significantly decreased rate of apoptosis in CXCR2 knockout mice versus wild-type mice; there were no differences seen in hepatocyte proliferation in wild-type mice versus knockout mice after this injury. CONCLUSION The decreased rate of apoptosis in the knockout mice correlated with an almost undetectable and significantly decreased level of activated caspase-3 and significantly increased levels of X-linked inhibitor of apoptosis protein, which also correlated with increased levels of nuclear factor kappa B p52 and decreased levels of c-Jun N-terminal kinase; this provides a possible mechanism for the decrease in apoptosis seen in CXCR2 knockout mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metallothionein-I/II knockout mice are sensitive to acetaminophen-induced hepatotoxicity.

The purpose of this study was to examine whether intracellular metallothionein (MT) protects against acetaminophen hepatotoxicity. MT-I/II knockout (MT-null) and control mice were given acetaminophen (150-500 mg/kg i.p.), and liver injury was assessed 24 h later. MT-null mice were more susceptible than controls to acetaminophen-induced lethality and hepatotoxicity, as evidenced by elevated seru...

متن کامل

Sake lees hydrolysate protects against acetaminophen-induced hepatotoxicity via activation of the Nrf2 antioxidant pathway

Acetaminophen is a commonly used analgesic. However, an overdose of acetaminophen causes severe hepatotoxicity via depletion of hepatic glutathione. Here, we investigated the protective effects of sake lees hydrolysate against acetaminophen-induced hepatotoxicity in mice. Sake lees hydrolysate was administered orally to ICR mice for seven days. Six hours after acetaminophen treatment, the mice ...

متن کامل

Role of the nuclear receptor pregnane X receptor in acetaminophen hepatotoxicity.

The pregnane X receptor (PXR) is a transcriptional regulator of xenobiotic metabolizing enzymes, including cytochrome P450 3A (CYP3A), and transporters. Pretreatment of mice and rats with inducers of CYP3A increases acetaminophen (APAP) hepatotoxicity. In untreated mice, the amount of hepatic CYP3A11 mRNA is 4-fold greater in PXR(-/-) mice compared to wild-type mice (Guo et al., 2003), a findin...

متن کامل

Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity.

Acetaminophen (APAP) overdose causes acute liver failure in humans and rodents due in part to the destruction of mitochondria as a result of increased oxidative stress followed by hepatocellular necrosis. Activation of the peroxisome proliferator-activated receptor alpha (PPARα), a member of the nuclear receptor superfamily that controls the expression of genes encoding peroxisomal and mitochon...

متن کامل

BLT1 signalling protects the liver against acetaminophen hepatotoxicity by preventing excessive accumulation of hepatic neutrophils

Leukotriene B4 (LTB4) is a potent chemoattractant for neutrophils. Signalling of LTB4 receptor type 1 (BLT1) has pro-inflammatory functions through neutrophil recruitment. In this study, we investigated whether BLT1 signalling plays a role in acetaminophen (APAP)-induced liver injury by affecting inflammatory responses including the accumulation of hepatic neutrophils. BLT1-knockout (BLT1(-/-))...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hepatology

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2010